FINMECCANICAInnovazione

Metro driverless

L'Europa riveste il ruolo di culla delle tecnologie per i trasporti ferrotranviari e in particolare per le metropolitane automatiche.

egli ultimi anni nel mondo sono stati realizzati una media di 4 sistemi di metropolitane driverless all'anno, per un totale di circa 500 veicoli con guida automatica. A questi clienti si aggiungono quelli che hanno preferito trasformare alcune linee già in servizio, dotando i veicoli esistenti di sistema di guida senza conducente. Alla generale risposta che i sistemi di trasporto collettivo a guida vincolata su ferro danno alle tematiche ambientali e di sviluppo sostenibile, unitamente alle esigenze di realizzazione di nuovi sistemi di trasporto in ambito urbano e metropolitano fortemente guidate dai nuovi paesi emergenti, si aggiungono infatti i vantaggi di tipo gestionale dei sistemi driverless, che dal semplice people mover (sistemi di trasporto punto a punto, del tipo navetta) si sono evoluti sino ai sistemi complessi di metropolitane automatiche.

Ne consegue che i produttori hanno dovuto affrontare negli ultimi anni molteplici sfide tecnologiche, in ragione di esigenze diverse, in termini di prestazione dei veicoli, capacità di trasporto, accelerazione e alimentazione, accomunate da scelte gestionali nel rispetto ambientale. In questo contesto, con le sue Metro Leggere (MLA) e Metro Pesanti Automatiche (HRV), le prime installate e operative tra l'altro a Copenhagen, Milano, Brescia, Riyadh Honolulu e Taipei, le seconde a Salonicco e Roma, l'Ansaldo-Breda (Azienda del Gruppo Finmeccanica) evidenzia come l'Italia abbia raggiunto punte di eccellenza mondiale in un settore particolarmente critico, come quello dei sistemi automatici del trasporto urbano.

Il primo sistema *driverless* realizzato da AnsaldoBreda è entrato in servizio nel 2002 a Copenhagen e a oggi, grazie ad una perfetta integrazione tra sistema automatico di guida e sistema di controllo e monitoraggio del treno, garantisce una disponibilità superiore al 99 per cento. Tutti i veicoli della piattaforma MLA sono configurabili da 2 a 6

vagoni, per una capacità di trasporto totale che va da un minimo di 220 a un massimo di 800 passeggeri trasportati per veicolo. Tutte le configurazioni ottimizzano la potenza di trazione installata e il numero dei carrelli motorizzati, in funzione delle prestazioni e della capacità di trasporto richiesta. La velocità massima di esercizio può raggiungere i 90 km/h.

Le soluzioni offerte si completano con l'architettura a 6 vagoni (in cui il massimo numero di passeggeri trasportati supera i 1.200) e a 2-4 vagoni, studiate per i veicoli pesanti di Metro Roma linea C e Metro Honolulu. La piattaforma unmanned consente vantaggi gestionali ed elevate prestazioni e capacità di trasporto altrimenti non raggiungibili, con ridotti tempi di cadenzamento (headway tra i 60 secondi e i 90 secondi), un funzionamento in servizio 24 ore su 24 e una massimizzazione del numero dei passeggeri trasportati per ora e per direzione di marcia in totale sicurezza.

Completano il quadro l'elevata affidabilità dei veicoli, che riduce i tempi di fermomacchina, e la maggiore flessibilità di esercizio, mirata alla riduzione dei consumi energetici grazie alla possibilità di ottimizzare le curve di accelerazione e frenatura dei veicoli in accordo ai picchi di affollamento.

La piattaforma si basa su moduli tecnologici *service proven* perfettamente integrati con l'architettura di controllo e supervisione del treno (TCMS) e con il sistema di marcia automatico (ATC/CBTC). Le principali innovazioni tecnologiche che sono alla base dei veicoli AnsaldoBreda, mirano all'incremento della disponibilità, del comfort e dell'affidabilità e possono venire sintetizzate nelle seguenti.

- Sistema di controllo elettronico di ultima generazione (*Train Control and Monitoring System*) a ridondanza "calda" che assicura il mantenimento del servizio in caso di singola *failure*, aumenta la disponibilità del servizio e consente un monitoraggio in tempo reale di tutti i sottosistemi del veicolo: l'Ethernet, come veicolo di comunicazione tra i sottosistemi di bordo, assicura una grande capacità e velocità di trasporto delle informazioni con la possibilità di ricevere in tempo reale gli stati del veicolo (telemetria al posto centrale).
- Sistema di propulsione con inverter che impiegano IGBT ad alta efficienza di ultima generazione e che consentono il raffreddamento assistito del moto del veicolo.
- Sistema di alimentazione ausiliaria a ventilazione naturale e a elevata efficienza energetica.
- Tecnologia di raffreddamento a ventilazione naturale che abbassa i consumi energetici e riduce il rumore.
- Capacità di frenatura elettrica rigenerativa fino a bassissime velocità, che massimizza il recupero energetico verso la linea di alimentazione.
- Sistema di condizionamento di ultima generazione con inverter integrato ad alta efficienza e doppi circuiti di refrigerazione e riscaldamento, che consentono una bassa riduzione del grado di comfort anche in condizioni degradate e aumentano la disponibilità del veicolo.
- Utilizzo di finestrini, parabrezza e materiali per isolamento termoacustico a basso coefficiente di trasmissione termica: l'incremento dell'inerzia termica del veicolo (inferiore ai 3 W/m²K) permette il mantenimento del comfort passeggeri in condi-

38 MIT TECHNOLOGY REVIEW EDIZIONE ITALIANA 9/2018

zioni climatiche estreme, aumentando l'efficienza del veicolo e riducendone in parallelo i consumi. L'utilizzazione di tali materiali consente il mantenimento di un'elevata efficienza energetica in tutte le zone del globo, a partire da quelle calde e tropicali di Riyadh e Honolulu fino ad arrivare a quelle rigide di Copenhagen.

- Sistemi di illuminazione interna ed esterna a LED (*strip lines*) a basso consumo energetico (ridotto del 50 per cento rispetto alla tecnologia delle lampade a fluorescenza).
- Cassa in alluminio, che permette un alleggerimento dei pesi del veicolo a vantaggio dell'efficienza energetica complessiva.
- Sistemi freno elettronico con controllo antipattinante integrato (WSP) ad attuazione idraulica o pneumatica e a controllo indipendente per carrello, per il mantenimento della prestazione in frenatura in condizioni di singolo guasto e in qualsiasi condizione di peso.
- Attivazione automatica (*Automatic Vehicle Start-Up*) del veicolo dal posto centrale: l'attivazione automatica del veicolo in presenza della tensione di alimentazione primaria permette di abilitare il treno al servizio senza personale a bordo e consente di ridurre i tempi di preparazione e i costi associati al personale.
- Sistema bidirezionale terra-bordo integrato con filodiffusione e microfoni ambientali per la comunicazione tra passeggeri e posto centrale in caso di emergenza.
- \blacksquare Sistema Wi-Fi optional per la navigazione su Web.

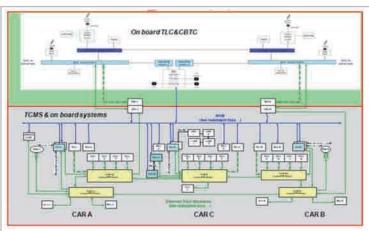
Il binomio Safety&Security rappresenta una delle caratteristiche fondamentali della tecnologia *driverless* di AnsaldoBreda grazie all'impiego di un sistema di automazione con il più alto livello di integrità sino a oggi realizzato e in commercio. L'impiego di sistemi di sorveglianza integrati per la registrazione e l'invio delle immagini al posto centrale, l'utilizzazione di sistemi di rilevazione incendio a controllo ottico (smoke detection) e termico (thermal detection) indipendenti sia in comparto, sia nei vani tecnici permettono di massimizzare la sicurezza e il controllo a distanza delle condizioni operative del veicolo.

Tutti i veicoli driverless sono equipaggiati con un sistema ridondato di automazione (ATC-Automatic Train Control) che consente:

- La modifica e l'adattamento degli *speed* diagrams alla capacità di trasporto in funzione della domanda.
- Il coordinamento funzionale tra gli equipaggiamenti di bordo e la stazione, in particolare tra le porte di banchina e le porte di veicolo, per garantire il corretto funzionamento in sicurezza, anche in condizioni degradate.
- La massima precisione dell'arresto a bersaglio in banchina (con un'accuratezza inferiore ai 30 cm.) con funzione di riposizionamento automatico in caso di over/undershoot.
- La perfetta integrazione tra gli allarmi a bordo del veicolo e la centrale operativa.
- Il recupero automatico, *rescue operation*, di un veicolo in avaria mediante un altro veicolo, in configurazione *push/pull*.
- Il coordinamento centralizzato delle funzioni di *wake up* automatico via radio dei veicoli in sosta in area di parcheggio/deposito per inizio servizio.

Lo stile interno ed esterno rappresenta un ulteriore elemento distintivo dei prodotti driverless di AnsaldoBreda: tutti i veicoli sono caratterizzati da un design moderno, essenziale e confortevole, che esalta l'assenza della cabina di guida e permette ai passeggeri di godersi il panorama offerto dall'ampio e luminoso parabrezza. Un elevato comfort di marcia, gli interni progettati per garantire facilità nelle pulizie e nel controllo dei comparti, ampi e intercomunicanti, completano il tratto distintivo del design di questa famiglia di veicoli.

Tutti i prodotti *driverless* di AnsaldoBreda sono caratterizzati inoltre da un unico ampio corridoio che permette il libero passaggio tra i vagoni, favorendo la distribuzione uniforme dei passeggeri all'interno del veicolo, massimizzandone il comfort.


Quali le prospettive e le prossime sfide tecnologiche del prodotto metro *driverless*?

Per quanto concerne le prospettive di mercato, sono considerate positive in termini di volumi e trend attesi, mostrando un lento, ma continuo consolidamento e soprattutto uno spostamento di domanda dai paesi più tecnologicamente all'avanguardia o sfidanti in termini di tecnologie a una più diffusa applicazione geografica.

Per quanto concerne il fronte dell' evoluzione delle tecnologie, in un settore caratterizzato da una continuità tecnologica, già i sistemi driverless rappresentano una sfida determinante, destinata a trovare affinamenti e updating tecnologici continui in termini di cadenzamento in risposta all'incremento di capacità di trasporto, flessibilità di servizio, risparmio energetico e tecnologie per la connessione terra treno.

Nella pagina accanto: Metro Copenhagen. In questa pagina: a sinistra, interni di Metro Riad; a destra, architettura Integrata di bordo.

